On maximal chains in the non-crossing partition lattice

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A basis for the non-crossing partition lattice top homology

We find a basis for the top homology of the non-crossing partition lattice Tn . Though Tn is not a geometric lattice, we are able to adapt techniques of Björner (A. Björner, On the homology of geometric lattices. Algebra Universalis 14 (1982), no. 1, 107–128) to find a basis with Cn−1 elements that are in bijection with binary trees. Then we analyze the action of the dihedral group on this basis.

متن کامل

Chains in the Noncrossing Partition Lattice

We establish recursions counting various classes of chains in the noncrossing partition lattice of a finite Coxeter group. The recursions specialize a general relation which is proven uniformly (i.e. without appealing to the classification of finite Coxeter groups) using basic facts about noncrossing partitions. We solve these recursions for each finite Coxeter group in the classification. Amon...

متن کامل

The number of maximal matchings in polyphenylene chains

A matching is maximal if no other matching contains it as a proper subset. Maximal matchings model phenomena across many disciplines, including applications within chemistry. In this paper, we study maximal matchings in an important class of chemical compounds: polyphenylenes. In particular, we determine the extremal polyphenylene chains in regards to the number of maximal matchings. We also de...

متن کامل

Non-crossing Partition Lattices in Finite Real Reflection Groups

For a finite real reflection group W with Coxeter element γ we give a case-free proof that the closed interval, [I, γ], forms a lattice in the partial order on W induced by reflection length. Key to this is the construction of an isomorphic lattice of spherical simplicial complexes. We also prove that the greatest element in this latter lattice embeds in the type W simplicial generalised associ...

متن کامل

Geometrically Constructed Bases for Homology of Non-Crossing Partition Lattices

For any finite, real reflection group W , we construct a geometric basis for the homology of the corresponding non-crossing partition lattice. We relate this to the basis for the homology of the corresponding intersection lattice introduced by Björner and Wachs in [4] using a general construction of a generic affine hyperplane for the central hyperplane arrangement defined by W .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2014

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2014.02.002